With the demand for Internet connectivity in remote areas, the space-air-ground integrated network (SAGIN) was proposed to achieve ubiquitous coverage and enhance service capabilities of extant terrestrial networks. The paradigm of virtual network element placement (NEP) is applied into SAGIN. It can save energy and operating costs by placing specific network elements (NEs) as software instances. In addition, it helps to provide services in end-to-end networks with its ability to allocate and manage resources flexibly. However, NEP faces some challenges in SAGIN. The network topologies can be dynamic, and links such as the satellite-to-ground and air-to-ground ones are prone to fail. These will make NEP management more complicated. Moreover, the static NEP schemes are hard to accommodate the time-varying traffic. In this context, this work explains the NEP problem in SAGIN from three aspects, i.e., the SAGIN radio access network (RAN), the SAGIN core network (CN), and the SAGIN barrier network (BN). First, the physical and networking architectures of SAGIN are introduced. Then the status of the network element placement and corresponding challenges are described from these two aspects. Finally, this paper discusses future research directions and key technical challenges.
Chinese Journal of Electronics, Volume 31, Issue 6, Page 1013-1024, November 2022. Leer más Wiley: Chinese Journal of Electronics: Table of Contents